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Determining the region of origin of blood spatter patterns considering fluid
dynamics, statistical uncertainties

Abstract
Trajectory reconstruction in bloodstain pattern analysis is currently performed by assuming that blood drop
trajectories are straight along directions provided by stain inspection. Recently, several attempts have been
made at reconstructing ballistic trajectories backwards, considering the effects of gravity and drag forces. Here,
we propose a method to reconstruct the region of origin of impact blood spatter patterns that considers fluid
dynamics and statistical uncertainties. The fluid dynamics relies on defining for each stain a range of physically
possible trajectories, based on known physics of how drops deform, both in flight and upon slanted impact.
Statistical uncertainties are estimated and propagated along the calculations, and a probabilistic approach is
used to determine the region of origin as a volume most compatible with the backward trajectories. A publicly
available data set of impact spatter patterns on a vertical wall with various impactor velocities and distances to
target is used to test the model and evaluate its robustness, precision, and accuracy. Results show that the
proposed method allows reconstruction of bloodletting events with distances between the wall and blood
source larger than ˜1 m. The uncertainty of the method is determined, and its dependency on the distance
between the blood source and the wall is characterized. Causes of error and uncertainty are discussed. The
proposed method allows the consideration of stains indicating impact velocities that point downwards, which
have typically been excluded from trajectory reconstruction. Based on the proposed method, two practical
recommendations on crime scene documentation are drawn.
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Highlights 

 This paper describes the development of a method to improve the accuracy of a method 

used by bloodstain pattern analysts known as Area of Origin determination, which is 

applied to impact spatter patterns at crime scenes.   

 This method has traditionally involved an assumption of straight line trajectories for 

spattered drops and has been without a solid basis for estimating an uncertainty in the 

resulting X, Y, Z coordinate estimates.   

 This study aims to address the two aboveissues. 

 The proposed framework is based on fluid dynamics and on the propagation of 

statistical uncertainties 

 All the spatter patterns used in this work are available in an open-access dataset, in 

high-resolution, so that other methods of reconstruction or stain selection can be 

compared with the one presented here 

 

Bibliography 

[1] L. Hulse-Smith, N. Z. Mehdizadeh, and S. Chandra, "Deducing drop size and impact velocity from 
circular bloodstains," Journal of Forensic Sciences, vol. 50, no. 1, pp. 54-63, 2005. 

[2] M. Lockard, "THE FLUID DYNAMICS OF DROPLET IMPACTS ON INCLINED SURFACES WITH 
APPLICATION TO FORENSIC BLOOD-SPATTER ANALYSIS," Mechanical Engineering, MS Thesis, 
Georgia Tech, 2015. 

[3] S. Kim, Y. Ma, P. Agrawal, and D. Attinger, "How important is it to consider target properties and 
hematocrit in bloodstain pattern analysis?," Forensic Science International, vol. 266, pp. 178-184, 
2016. 

ACCEPTED M
ANUSCRIP

T



2 
 

[4] P. Agrawal, L. Barnet, and D. Attinger, "Bloodstains on woven fabric: Simulations and experiments 
for quantifying the uncertainty on the impact and directional angles," Forensic Science 
International, vol. 278, pp. 240-252, 2017/09/01/ 2017. 

[5] P. M. Comiskey, A. L. Yarin, and D. Attinger, "Hydrodynamics of back spatter by blunt bullet 
gunshot with a link to bloodstain pattern analysis," Physical Review Fluids, vol. 2, no. 7, p. 073906, 
2017. 

[6] P. M. Comiskey, A. L. Yarin, and D. Attinger, "Theoretical and experimental investigation of 
forward spatter of blood from a gunshot," Physical Review Fluids, vol. 3, no. 6, p. 063901, Jun 
2018, Art. no. 063901. 

[7] D. Attinger, Y. Liu, T. Bybee, and K. De Brabanter, "A data set of bloodstain patterns for teaching 
and research in bloodstain pattern analysis: Impact beating spatters," Data in Brief, vol. 18, pp. 
648-654, 2018. 

[8] D. Attinger, Y. Liu, R. Faflak, Y. Rao, B. A. Struttman, K. De Brabanter, P. M. Comiskey, and A. L. 
Yarin, "A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis:  
gunshot backspatters," vol. 22, pp. 269-278, 2019. 

[9] T. L. Laber, B. P. Epstein, and M. C. Taylor, "High speed digital video analysis of bloodstain pattern 
formation from common bloodletting mechanisms," IABPA News, pp. 4-12, 2008. 

[10] P. M. Comiskey, A. L. Yarin, and D. Attinger, "High-Speed Video Analysis of Forward and Backward 
Spattered Blood Droplets," Forensic Science International, vol. 276, pp. 134-141, 2017. 

[11] R. M. Arthur, P. J. Humburg, J. Hoogenboom, M. Baiker, M. C. Taylor, and K. G. de Bruin, "An 
image-processing methodology for extracting bloodstain pattern features," Forensic Science 
International, vol. 277, pp. 122-132, 2017/08/01/ 2017. 

[12] T. C. de Castro, M. C. Taylor, D. J. Carr, J. Athens, and J. A. Kieser, "Storage life of whole porcine 
blood used for bloodstain pattern analysis," Canadian Society of Forensic Science Journal, vol. 49, 
no. 1, pp. 26-37, 2016/01/02 2016. 

[13] A. Kolbasov, P. Comiskey, R. P. Sahu, S. Sinha-Ray, A. L. Yarin, B. S. Sikarwar, S. Kim, T. Z. Jubery, 
and D. Attinger, "Blood Rheology in Shear and Uniaxial Elongation," Rheologica Acta, vol. 55, pp. 
901-908, 2016. 

[14] N. Kabaliuk, M. C. Jermy, E. Williams, T. L. Laber, and M. C. Taylor, "Experimental validation of a 
numerical model for predicting the trajectory of blood drops in typical crime scene conditions, 
including droplet deformation and breakup, with a study of the effect of indoor air currents and 
wind on typical spatter drop trajectories," Forensic Sci Int, vol. 245, pp. 107-20, Dec 2014. 

[15] N. Laan, K. G. de Bruin, D. Slenter, J. Wilhelm, M. Jermy, and D. Bonn, "Bloodstain Pattern Analysis: 
implementation of a fluid dynamic model for position determination of victims," Sci Rep, Article 
vol. 5, p. 11461, 2015. 

[16] D. Attinger, C. Moore, A. Donaldson, A. Jafari, and H. A. Stone, "Fluid dynamics topics in bloodstain 
pattern analysis: comparative review and research opportunities," (in eng), Forensic Sci Int, vol. 
231, no. 1-3, pp. 375-96, 2013. 

[17] C. Bresteau, S. Guigui, P. Berthier, J. M. Fernandez, and Ieee, "ON THE SECURITY OF 
AERONAUTICAL DATALINK COMMUNICATIONS: PROBLEMS AND SOLUTIONS," in 2018 Integrated 
Communications, Navigation, Surveillance Conference(Integrated Communications Navigation 
and Surveillance Conference, New York: Ieee, 2018. 

[18] M. Grabmuller, P. Cachee, B. Madea, and C. Courts, "How far does it get?--The effect of shooting 
distance and type of firearm on the simultaneous analysis of DNA and RNA from backspatter 
recovered from inside and outside surfaces of firearms," (in Eng), Forensic Sci Int, Research 
Support, Non-U.S. Gov't vol. 258, pp. 11-8, Jan 2016. 

[19] C. Rossi, L. D. Herold, T. Bevel, L. McCauley, and S. Guadarrama, "Cranial Backspatter Pattern 
Production Utilizing Human Cadavers," J Forensic Sci, vol. 63, no. 5, pp. 1526-1532, Sep 2018. 

ACCEPTED M
ANUSCRIP

T



3 
 

[20] B. G. Stephens and T. B. Allen, "Back spatter of blood from gunshot wounds. Observations and 
experimental simulation," Journal of Forensic Sciences, vol. 28, no. 2, pp. 437-439, 1983. 

[21] S. Siu, J. Pender, F. Springer, F. Tulleners, and W. Ristenpart, "Quantitative Differentiation of 
Bloodstain Patterns Resulting from Gunshot and Blunt Force Impacts," (in eng), J Forensic Sci, pp. 
1-14, Feb 10 2017. 

[22] P. M. Comiskey, A. L. Yarin, S. Kim, and D. Attinger, "Prediction of blood back spatter from a 
gunshot in bloodstain pattern analysis," Physical Review Fluids, vol. 1, no. 4, p. 043201, 2016. 

[23] Anonymous, "literature search for the distance that backspatter travels," IABPA News, vol. 23, no. 
3, September 2017, pp. 31-32, 2007. 

[24] S. H. James, P. E. Kish, and T. P. Sutton, Principles of Bloodstain Pattern Analysis: Theory and 
Practice. CRC Press, 2005. 

[25] H. L. MacDonell, Bloodstain Patterns, 2nd. ed. Laboratory of Forensic Sciences, Corning, NY USA, 
2005. 

[26] P. R. D. Forest, R. E. Gaensslen, and H. C. Lee, Forensic science: An introduction to criminalistics. 
McGraw-Hill, New York, 1983. 

[27] J. O. Pex and C. H. Vaughan, "Observations of high velocity bloodspatter on adjacent objects," 
Journal of Forensic Sciences, vol. 32, no. 6, pp. 1587-1594, 1987. 

[28] B. Karger, R. Nüsse, B. Brinkmann, G. Schroeder, and S. Wüstenbecker, "Backspatter from 
experimental close-range shots to the head: 1. Macrobackspatter," (in English), International 
journal of legal medicine, vol. 109, no. 2, pp. 66-74, 1996/10/01 1996. 

[29] B. Karger, R. Nüsse, H. D. Tröger, and B. Brinkmann, "Backspatter from experimental close-range 
shots to the head: 2. Microbackspatter and the morphology of bloodstains," Int J Legal Med (1997) 
110 : 27-30, 1997. 

[30] T. Bevel and R. M. Gardner, 2, Ed. Bloodstain Pattern Analysis with an Introduction to Crime Scene 
Reconstruction. CRC Press, Boca Raton, FL, USA, 2002. 

[31] J. Bockrath and R. Lugo, "Slugger Slaying Caught on Tape," in 2017 Annual IABPA Training 
Conference (International Association of Bloodstain Pattern Analysts), Crown Plaza Redondo 
Beach and Marina, 2017. 

[32] F. Camana, "Determining the area of convergence in Bloodstain Pattern Analysis: A probabilistic 
approach," Forensic Science International, vol. 231, no. 1-3, pp. 131-136, Sep 10 2013. 

[33] D. Attinger, P. Comiskey, A. Yarin, and K. De Brabanter, "Determining the region of origin of blood 
spatters considering fluid dynamics and statistical uncertainties," being finalized for Forensic 
Science International (status January 2018). 

[34] T. G. Theofanous, "Aerobreakup of Newtonian and Viscoelastic Liquids," Annual Review of Fluid 
Mechanics, vol. 43, no. 1, pp. 661-690, 2011. 

[35] G. M. Faeth, L. P. Hsiang, and P. K. Wu, "Structure and breakup properties of sprays," International 
Journal of Multiphase Flow, vol. 21, pp. 99-127, Dec 1995. 

[36] M. Vargas, "Drag Coefficient of Water Droplets Approaching the Leading Edge of an Airfoil," 5th 
AIAA Atmospheric and Space Environments Conference, pp. 1-23, DOI:10.2514/6.2013-3054, 2013. 

[37] E. Loth, "Quasi-steady shape and drag of deformable bubbles and drops," (in English), 
International Journal of Multiphase Flow, Review vol. 34, no. 6, pp. 523-546, Jun 2008. 

[38] A. Reinhart, "Das Verhalten fallender Tropfen," Chem. Ing. Tech., p. 36, 1964. 
[39] R. Clift, J. R. Grace, and M. E. Weber, Bubbles, drops and particles. New York: Academic, 1978. 
[40] C. D. Adam, "Fundamental studies of bloodstain formation and characteristics," (in Eng), Forensic 

Sci Int, no. 219, pp. 76-87, 2012. 
[41] R. P. Sahu, S. Sett, A. L. Yarin, and B. Pourdeyhimi, "Impact of aqueous suspension drops onto non-

wettable porous membranes: Hydrodynamic focusing and penetration of nanoparticles," Colloids 
and Surfaces A: Physicochemical and Engineering Aspects, vol. 467, pp. 31-45, 2015. 

ACCEPTED M
ANUSCRIP

T



4 
 

[42] B. L. Scheller and D. W. Bousfield, "Newtonian drop impact with a solid surface," AICHE Journal, 
vol. 41, no. 6, pp. 1357-1367, 1995. 

[43] L. P. Hsiang and G. M. Faeth, "NEAR-LIMIT DROP DEFORMATION AND SECONDARY BREAKUP," 
International Journal of Multiphase Flow, vol. 18, no. 5, pp. 635-652, Sep 1992. 

[44] G. Recktenwald, Numerical methods with Matlab: Implementations and applications. Upper-
Saddle River, NJ.: Prentice-Hall, 2000. 

 

 

 

Abstract 
Trajectory reconstruction in bloodstain pattern analysis is currently performed by assuming that 

blood drop trajectories are straight along directions provided by stain inspection. Recently, several 

attempts have been made at reconstructing ballistic trajectories backwards, considering the 

effects of gravity and drag forces. Here, we propose a method to reconstruct the region of origin 

of impact blood spatter patterns that considers fluid dynamics and statistical uncertainties. The 

fluid dynamics relies on defining for each stain a range of physically possible trajectories, based 

on known physics of how drops deform, both in flight and upon slanted impact. Statistical 

uncertainties are estimated and propagated along the calculations, and a probabilistic approach 

is used to determine the region of origin as a volume most compatible with the backward 

trajectories. A publicly available data set of impact spatter patterns on a vertical wall with various 

impactor velocities and distances to target is used to test the model and evaluate its robustness, 

precision, and accuracy. Results show that the proposed method allows reconstruction of 

bloodletting events with distances between the wall and blood source larger than ~1 m. The 

uncertainty of the method is determined, and its dependency on the distance between the blood 

source and the wall is characterized. Causes of error and uncertainty are discussed. The 

proposed method allows the consideration of stains indicating impact velocities that point 

downwards, which have typically been excluded from trajectory reconstruction. Based on the 

proposed method, two practical recommendations on crime scene documentation are drawn. 

 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



5 
 

1. Introduction 
Bloodstain Pattern Analysis (BPA) is one of many techniques of forensic science and crime scene 

investigation [1, 2]. Besides the determination of the mechanisms causing specific collections of 

stains (patterns), BPA also aims at reconstructing blood spatter patterns – patterns generated by 

impact of airborne drops on a target surface. For spatter patterns, the determination of the 3D 

location of the spatter producing event -the region of origin- is relevant to criminal cases. Note 

that the term region of origin used throughout the manuscript departs from current standards [3] 

in BPA, which recommend area of origin. We find that term confusing because of its 2D technical 

meaning, while the origin of a spatter is clearly a 3D region of space, that the work in this 

manuscript identifies and measure as a volume.  As translated from the 1939 extensive and 

seminal BPA study of Balthazard et al. [4] “The problem of reconstructing curved trajectories is 

very difficult to solve”. Indeed, proper backward reconstruction of the trajectory of a single drop 

relies on the determination of the three impact velocity components, as well as the drop volume, 

the latter necessary for the consideration of drag forces along the trajectory. 

Backward trajectory reconstruction typically involves the following steps: (1) the inspection of the 

roughness, cleanliness and wickability of the target surface, the surface where the stains are 

located; (2) the selection of a sufficient and tractable number of stains out of many (sometimes 

more than 10,000 [5]) blood stains at the target surface; (3) the measurement of size, shape and 

orientation of those stains, and; (4) the inference of impact conditions based on measurements in 

(3); (5) the backward reconstruction of drop trajectories compatible with the stains and impact 

conditions; and (6) the identification of a region of origin in 3D space. Current trajectory 

reconstruction methods [6] are called the method of strings or the tangent method, and assume 

that blood drops travel in straight trajectories from the area of origin to the target surface. Software 

based on same method and assumptions is available and used in crime scenes [7, 8].  

It is commonly understood that the assumption of straight trajectories is not expected to induce 

systematic errors in the determination of the region of convergence, which we define as in [9, 10], 

as the projection of the region of origin on a horizontal surface (e.g. the floor). Some analysts 

determine the region of convergence in the plane of the spatter pattern, which can be of any 

orientation, but like the two well-cited works above, we use a horizontal plane where the projection 

of the trajectories are not affected by gravity. Certainly, methods neglecting gravity and drag 

forces cause systematic errors in the height determination of the region of origin [11, 12]. For 

instance, [13] showed experimentally that doing so “over-estimates the point of origin and the 

error associated with this technique is significant (50% on average).” Such error is significant 

enough to wrongly conclude that a person was standing when in fact they may have been sitting. 

The magnitude of this error is difficult to estimate, because it arises from the use of a physically 

inconsistent model. It has been conjectured in [14] that, “a satisfactory reconstruction” is achieved 

using straight trajectories if the region of origin is determined ”within the volume of a grapefruit, 

or even a basketball”, but there is no universally accepted method to determine the uncertainty 

associated with the method of strings.   

Here, we focus on the common situation where the spatter pattern is found on a vertical wall, as 

depicted in Figure 1. A description of the method of strings for stains on a vertical wall is given in 

Carter [9].  
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Recently, a probabilistic approach has been proposed by Camana [10] to determine the region of 

convergence. The method relies on the propagation of measurement uncertainties to the 

horizontal projections of the trajectories, and constructs a joint probability density function 

describing the probability that convergence would be within a given spatial region. Of interest is 

that the method generates a probabilistic map for the area of convergence, directly linking the 

angles of impact and their uncertainties, to the region of convergence and its area. In other words, 

[10] proposes for the first time a rational method to estimate the magnitude of the uncertainty 

around the most likely point of convergence. The ability to rationally provide the uncertainty of a 

measurement is an important component in expert testimony. 

In parallel, several approaches have been proposed to consider the effects of drag and gravity on 

the backward trajectories in BPA. Buck et al. [15] reconstructed drop trajectories with a modified 

ballistic model, considering gravity and drag forces. In their ballistic analysis, they screened a 

range of velocity values for compatibility with the preservation of the drop during the flight, since 

higher velocities result in drop breakup when drag forces overcome the surface tension. While an 

incorrect assumption on the fluid dynamics of drop impact associated with their analysis is 

discussed in [16], the present work is inspired by their work. A statistical procedure [17] based on 

aggregate statistics and the basic equation of projectile motion has been shown to determine the 

area of origin of a blood spatter pattern for cases when the spatter is launched within a narrow 

range of polar angles –which is the case in, e.g. arterial gushing, but not in beatings or shootings 

[18]. Attinger et al. proposed [11]  a method to reconstruct the ballistic trajectory of a blood drop 

considering gravity and drag forces. By measuring the volume and shape of the bloodstain on the 

substrate, the diameter and the velocity of the original drop could be estimated. Such a method 

was implemented in [19] and [20], independently. While theoretically portable to crimes scenes, 

that approach is of limited use, because it requires a high-resolution 3D scanning of bloodstains, 

surfaces which are both non-absorbing and with roughness significantly smaller than typical stain 

thickness (O(10-100 m)). Also, stains are assumed not to contain internal voids, an assumption 

that is not always correct [4]. Very recently, Comiskey et al. [21] proposed a method to predict 

trajectories resulting from gunshot spatter patterns, accounting for the effect of air entrainment in 

the cloud of atomized drops and the aerodynamic drop-drop interaction. While the latter effect 

might be important near the origin, it is not clear at this time how this time-forward method can be 

used to reconstruct trajectories backward in time. 

In this manuscript, we extend the probabilistic approach of Camana [10], aimed at finding the 

region of convergence of a blood spatter pattern in a 2D space, to the determination of the region 

of origin in a 3D space. The core idea of the proposed method is as follows: for each stain of 

interest, impact angles are estimated from the orientation and ellipticity of the stain. Then, fluid 

dynamics arguments determine a finite range of possible impact conditions (as proposed in [15]) 

in terms of pairs of drop diameters and velocities, which correspond to a finite range of possible 

backward trajectories. Those fluid dynamics arguments consider drop deformation and breakup 

during flight and impact, the latter being visible by inspection of the periphery of the stain. Then, 

we statistically identify a 3D region from which the physically sound trajectories most probably 

originate. That region is called the region of origin, and defined not as a point but as a series of 

nested volumes. Those volumes can be represented as a set of Russian dolls, the smaller internal 

ones corresponding to a region of origin determined with a lower probability than the larger ones. 

Analogous to [10], the proposed method propagates measurement uncertainties and determines 

the volume of the region of origin based on fluid dynamics and statistics. 
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Hereafter, we describe the method mathematically, and apply it to published blood spatter pattern 

data [5] on vertical walls. The spatters were generated under a wide range of conditions.  

2. Methods 

2.1 Blood preparation and other experimental details 

The blood preparation and experimental methods are described in detail in the published, open-

source data set [5]  of impact blood spatter patterns and are only briefly discussed here. Namely, 

blood spatter patterns were generated by impact of either a cylindrical or a flat surface on a ~1mL 

pool of blood resting on another flat surface. Such processes generate spatter patterns similar to 

those generated during beating incidents or when stepping in puddles of blood. Spatter patterns 

were produced on vertical targets consisting of assembled flat vertical cardstock sheets with a 

total area up to 1.5 m2. The target was placed on the front wall (x=0) of a room where the air was 

quiescent. The geometry and coordinate system of the experiment are illustrated in Figure 1.  

The blood was less than two days old, from healthy swine, and gently rocked before the 

experiment. The temperature, anticoagulant and hematocrit are mentioned in [5]. The generated 

spatter patterns were scanned at a high resolution of 600 DPI. In comparison with photography 

with a high-end camera, scanning offers a higher resolution and suppresses parallax error.  

A wide range of horizontal distances (x0 = 30 cm to 120 cm) were considered between the target 

and the blood source. The other parameter that varied during the experiments was the speed of 

impact (2-9 m/s). Possibly, spatter patterns generated with a larger amount of blood, or with 

different mechanisms such as gunshot, a rat trap or a shoe step, would have resulted in different 

size distributions and spatial distributions of stains. 

 

2.2. Trajectory reconstruction process 
The method described in this paper is based on fluid dynamics and probability theory. The 

following sections describe the physical and probabilistic modeling involved in the proposed 

method, and its implementation. 

2.2.1 .Fluid Dynamics 

There is a wide body of engineering literature describing the trajectories of flying drops, in relation 

to e.g. inkjet printing [11], fuel injection [22] or raindrops [23]. The trajectories of flying drops are 

described with an equation of motion based on Newton’s law:  

 𝑚𝑑  
𝑑�⃗⃗� 

𝑑𝑡
= 𝑚𝑑𝑔 ⃗⃗  ⃗ − 𝐹𝐷

⃗⃗ ⃗⃗ .   (1)   

Above, 𝑚𝑑 , 𝑡, 𝑉 , 𝑔 ⃗⃗  ⃗ , 𝐹𝐷
⃗⃗ ⃗⃗  are the drop mass, time, drop velocity, gravity acceleration and drag force, 

respectively. It is assumed that the air is quiescent, and that the interactions between drops are 

negligible Lift forces are also neglected – those would matter if the drop spins and such 

information is unavailable at the time of reconstruction.  

To calculate the equation of motion (1), it is necessary to estimate the drag caused by the air on 

the travelling droplet. The drag force is defined as in [11] 
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𝐹𝐷
⃗⃗ ⃗⃗ =𝜌𝑎𝐶𝐷  

𝐴𝑑

2
�⃗� 𝑉 ,      (2) 

where 𝜌𝑎 , 𝐴𝑑  , 𝑉 and �⃗�  are the air density, the cross-sectional area of the undeformed droplet 

(Ad=πD2/4), the velocity magnitude, and velocity vector of the droplet, respectively. The 

dimensionless parameter CD is a drag coefficient for isolated spherical particle, modified to 

account for the significant particle deformation that occurs at intermediate Weber numbers, as 

described in the supplementary documentation.  

Determining the region of origin implies backward trajectory reconstruction using equation   (1). 

To do so, it is necessary to determine the impact conditions, which are the drop size D, and the 

impact velocity [11]. The impact velocity can be expressed with three orthogonal velocity 

components �⃗� = (
𝑢
𝑣
𝑤

), or (as done here) with a scalar measure of the velocity magnitude and two 

angles defining its direction.  The scalar measure is either the magnitude of the velocity vector, 𝑉, 

or that of its component normal to the wall, u . The two angles are the directional angle , 

measured clockwise from a vertical line to the major axis of an ellipse fitted on the bloodstain, and 

the impact angle which is estimated as, 

𝛼 ≅ 𝑎𝑠𝑖𝑛(𝑊/𝐿), (3) 

with L and W the respective length and width of an ellipse fitted to the stain.  

To determine the remaining impact conditions, we first note that for any given stain, the impact 

velocity is not independent of the drop diameter. Indeed, a relation between normal impact 

velocity, u and drop diameter, D can be established from a fluid dynamic correlation between the 

amount of spreading of a drop into a stain and its impact conditions. Based on dimensional 

analysis, the above relation can be expressed [24] in the way proposed by Bousfield and Scheller 

[25, 26],  

𝛽 = 𝑊/𝐷 = 𝑎(𝑅𝑒𝑁
2𝑂ℎ)𝑏. (4) 

Above, 𝛽 is the spread factor expressing how much the drop spread upon impact. It is defined as 

the ratio of stain width over drop diameter. The coefficients are specific to the impact surface, for 

the cardstock used in this study, a=0.257 and b=0.235 [27]; the Reynolds number 𝑅𝑒𝑁 = 𝜌𝑢𝐷/𝜇 

measures the ratio of the blood inertia normal to the impact surface to the viscous forces inside 

the drop, and the Ohnesorge number, , scales the viscous and surface tension forces. 

Symbols , , and  are the density, viscosity, and surface tension of the blood drop, 

respectively, and u is the velocity component normal to the target. The above correlation (4), can 

be rewritten to express the velocity, u, as an explicit function of drop diameter, D, for a given  

as, 

𝑢 =
 (
𝛽

𝑎⁄ )

1
2𝑏⁄

√𝜇√𝜎 

(ρD)
3

4⁄
.  

                     (5) 

Typically, the spread factor  is within a range of 1.25 - 6, which corresponds to impacts with very 

large and very low deformations reviewed in the literature [28]. For any given stain, any trial value 

trial within the above range is compatible with the fluid dynamics of the impact; together with the 

D
Oh
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measured stain size and impact angle, trial correspond to a trial impact velocity u of a droplet and 

a trial diameter D by equations (4) and                      (5), respectively.  Thus, for any measured stain, 

trial determines a possible impact condition (D trial, u trial, , ), so that a trial trajectory can be 

calculated by integrating the equation of  motion (Eq.   (1)) backward in time.  

Note that the above approach assumes that a set of trial trajectories is issued from each stain, in 

the manner of [15], and that this set is determined by the range of possible trial values of the 

spread factor. A first step to reduce the uncertainty on the region of origin is therefore to restrict 

the possible range of values of the spread factor. Two physical criteria are applied to do so, 

effectively eliminating non-physical trajectories: 

1) Flight breakup criterion: flying drops can break-up when the aerodynamic drag forces 

acting on the drop exceed the cohesive surface tension forces. A measure of the ratio of 

the inertial forces to the surface tension forces is the Weber number based on the density 

of the air a. Thus the condition that no break-up occurs along the trajectory is expressed 

as, 

𝑊𝑒𝑎 =
𝜌𝑎𝐷𝑉2

𝜎
< 𝐾, (6) 

where V is the maximum velocity along the trajectory from the stain to the region above 

the area of convergence. The critical Weber number K for drop breakup in flight is set to 

13, consistently with extensive experimental studies by Hsiang and Faeth [29]. This 

criterion serves as an upper bound for the allowable velocity of a trial trajectory.  

2) Stain shape criterion: A second criterion is based on the stain periphery being 

compatible with the deformation occurring of the moving drop upon impact on a rigid target. 

It has been shown that upon normal impact [30] when inertial forces are negligible with 

respect to surface tension forces, the periphery of a blood stain is a smooth circle. For 

impacts with higher inertia, of magnitude comparable to surface tension, the periphery of 

the stain exhibits deformation such as waves or spines. Further increase of impact inertia 

induces splashing [31], visible in [30], where tiny “splashed” stains surround the leading 

edge of the main stain. This morphological transition, from smooth to wavy to splashed  

stain boundary, was already observed in 1939 [4], for normal and oblique impacts. While 

its use for trajectory reconstruction was considered at the time, it has never been 

successfully implemented, probably because of the abundance of parameters influencing 

the transition (angle of impact, impact velocity, drop size, substrate roughness). Recently, 

Bird et al. [32] described the related transition from smooth drop boundary to splashing for 

the more complex case of oblique impact, in a phase diagram with axes defined in terms 

of only two dimensionless impact numbers. The description of physical transitions with 

dimensionless numbers is typical of fluid dynamics, and allows one to describe a 

phenomenon, here the shape transition at the edge of drops occurring upon impact, with 

less variables. This reduction of the number of variables thus transforms the intractable 

problem identified in [4] into a tractable one. 

 

 

 

The first dimensionless number, 
1/2

n nWe Re , can be considered as a measure of the ratio of 

inertial forces -which drive the impact, over the viscous and surface tension forces -which 
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resist the impact. The second dimensionless number,
Re

t

n n

V

V
, is the ratio of the 

tangential impact velocity over the normal impact velocity, scaled by the Reynolds number 

term. It accounts for the effect of angular impact, which typically enhance the tendency to 

splash at the leading edge of the droplet, and reduces it at its trailing edge. Indeed, 

experiments done for this work, using the blood and target material of interest, show that 

the two dimensionless numbers of [32] can be used to associate blood stain shapes with 

impact conditions, as in the phase diagram of Figure 2. That figure exhibits insets with 

typical stain shapes, and calibration performed in this study (described in supplementary 

documentation) identified the limits between the three stain peripheral shapes with red 

and green lines. Above the red line, inertia dominates the resisting forces, and stains 

exhibit splashing in the form of smaller satellite spatter stains surrounding the leading edge 

of the main stain, as shown in the insets. Below the green line, inertia is lowest with respect 

to resisting forces, and stains exhibit a smooth boundary, symmetrical across their main 

axis. Between the red and the green line, stains exhibit wavy, asymmetric deformations of 

their boundaries. Note that a typical calibration process such as the one performed in this 

study for smooth cardstock can be done for other surfaces of interest to crime scene 

reconstruction. The calibration process provides both the phase diagram in Figure 2 and 

the spreading correlation (4) for a specific target surface. 

 

In the model presented in this manuscript, the phase diagram of Figure 2  is used to narrow 

down the range of acceptable trial values of . Trial impact conditions that correspond to 

a stain periphery shape different from that observed on the stain of interest are discarded.   

Effectively, consideration of this criterion linking the morphology of stain boundary with 

impact conditions reduces the range of impact conditions to be used in trial trajectory 

calculations. 

 

2.2.2. Probabilistic modeling 

 

The probabilistic determination of the region of origin is based on the principle of maximum 

likelihood [33], which describes the region of origin as a point of highest probability given our 

assumptions. The likelihood function is then used to produce the region of origin as a confidence 

volume around that point with varying levels of probability. Figure 3 describes the method 

graphically, where the likely region of convergence is first determined in the probabilistic manner 

of [10], and then the likely height above the region of convergence is estimated. To first determine 

the region of convergence, the horizontal plane is discretized along its x-y orthonormal directions 

with an array of points k, as in Figure 3. A probability density function (PDF) ik  expresses the 

probability density that the x-y projection of a trajectory from stain i passes through point k. As in 

[10], the PDF is, 

2

2

1
exp

22

ik
ik

ii

,   (7) 
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where ik is the angle between the wall and the horizontal projection of the segment between 

stain i and point k . The direction of the x-y projection of the trajectory towards stain i is determined 

as, 

𝜃𝑖 =
𝜋

2
+ 𝑎𝑡𝑎𝑛 (−

𝑠𝑖𝑛(𝛾𝑖)

tan (𝛼𝑖)
),   (8) 

The uncertainty i  (1/2 standard deviation) is determined using the propagation of uncertainties, 

where E is the absolute error in measuring the length L or width W of a stain as in [10], 

4 2 2 2 2
2 22 2 2 2

2 4 22 2 2 2 2 2

sin cos
.

sinsin
i

L W W
E E L W

L LL W L W W
   

    
(9) 
 

Above, the uncertainty on the measurement of the directional angle (expressed as usual in 

radians) is estimated from repeated measurements as 𝜕𝛾 = 0.07exp (3.1𝛼) . The above 

expression assumes that the measurements of W, L and E are independent, and is valid for 

( 0, ) and L W . Simpler expressions for the limit cases, 
2

, or, 0 , are in [10] 

and [34]. 

 

The second PDF 𝜙𝑖𝑘 describes the probability density that the trajectory from stain i passes at a 

height z above point k. Because there is no known criterion to prefer any trajectory among the 

ones compatible with the two criterion of flight breakup and stain shape, we assign equal 

probability to any of those compatible trajectories, using a uniform distribution. This uniform 

distribution is shown below with Gaussian tails added to account for trajectories with conditions 

narrowly close to the interval of maximum probability and for the sake of numerical stability in the 

maximum likelihood estimation.  In PDF, 

min max

2

min
min

2

max
max

,

1
( ) exp ,

2

1
exp ,

2

ik

A z z z

z zA
z z z

z z

z zA
z z

z z

, (10) 

A is a normalization constant, and m minaxz z z is the difference between the height of the 

highest and lowest trajectories compatible with the flight and stain shape criteria, aimed at stain i 

above point k. 

 

For N stains selected out of a blood spatter pattern, we can calculate the likelihood k  that their 

trajectories transit above a given point k of the floor as, 
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1

N

k ik

i

,  (11) 

and the likelihood ( )k z  that their trajectories pass at a given height z over point k as, 

1

( ) ( )
N

k ik

i

z z .  (12) 

Note that both definitions above assume that impact processes i are independent from each other. 

In other words, each stain forms independently from one another.  

 

Then, the probability density function, f, that a blood spatter pattern originates from a given 

location in 3D space (k, z), where k refers to a position in the horizontal plane, is defined as, 

( , ) k kf k z B z .  (13) 

Using normalization constant B, the spatial location maximizing f corresponds to the maximum 

likelihood of the trajectories passing by that location. The probability that the region of origin is 

within a given volume  can be expressed as, 

( , )P f k z d .  (14) 

Figure 3 illustrates this method for the case where N=2 stains.  

 

To summarize, the main idea of the method is to first determine the region of convergence in a 

horizontal plane as the area most compatible with projected trajectories (which are straight lines), 

and then for every discretized point of the area of convergence, to determine the range of height 

compatible with physical trajectories.  

2.2.3. Implementation  

Eight available digital spatter patterns scanned at high resolution, and publicly available [5] are 

used as input for the simulations. Their names, distance to the wall and velocity of the impactor 

are in Table 1.  

 

 

The reconstruction model presented in this manuscript is implemented in the scientific computing 

language MATLAB [35] version 2013b. Stains are automatically segmented (extracted as a 

geometrical entity from their background), and ellipses are automatically fitted [36]. Equations of 

motion   (1) are integrated with the ordinary differential equation solver ‘ode 45’.  

Note that per design, the angles  and  measured on a stain, i, define the natural direction i  

of the horizontal projection of the trajectory, within the uncertainty ∆𝜃𝑖. To calculate trajectories 

with horizontal projections in the vicinity of the projection of that natural trajectory, it is necessary 
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to perturb the trial impact velocity, according to a procedure described in the supplementary 

documentation.  

For each spatter pattern, a set of about 40 stains were automatically and randomly selected for 

reconstruction purposes. The criteria for stain selection were: (1) stains located at least at a given 

horizontal distance (8% of the horizontal distance between blood source and target) from the 

centroid of the spatter pattern; (2) stains with ellipticity corresponding to an impact angle between 

40 and 75 degrees, corresponding to the available calibration data described in supplementary 

documentation; (3) stains that minimize the uncertainty on the angle i  as per equation (9); and 

(4) half the stains with splashing features, and half without, in an attempt to use information from 

a variety of regions in the phase diagram of Figure 2. Manual supervision together with automatic 

comparison of the stain shape with an ellipse were then used to eliminate stains with shapes far 

remote from ellipses, as it sometimes occurs when multiple stains impact on top of each other, or 

stains with satellite features that could not be clearly attributed to the stain considered or to 

neighboring stains. Pictures of selected stains are saved, to preserve the possibility to compare 

the method at hand with other bloodstain pattern analysis software such as e.g. Hemospat  [8]. 

Note that all the spatter patterns used in this work are available in an open-access dataset [5], in 

high-resolution, so that other methods of reconstruction or stain selection can be compared with 

the one presented here.  

3. Results and discussion 
Reconstruction results are shown and discussed in this section in the following order: (1) 

reconstruction results of two spatter patterns representing a wide range of conditions: fast impact 

close to the wall for Figure 4  and slow impact far from the wall for Figure 5; (2) uncertainty and 

error associated with the eight the spatter patterns in Table 1,  and comparison with state of the 

art; (3) discussion of the implications for crime scene documentation.   

Figure 4 describes views of the reconstruction results for spatter pattern HP 31, corresponding to 

a fast impact close to the wall, with symbols explained in the figure caption. Trajectories for each 

stains have been calculated backward, and are plotted between the impact location (x=0m) and 

the location of the known blood source shown as a red cross in a white disk (xo, yo, zo). The 

trajectories in red are almost straight, because they correspond to the highest impact energy 

compatible with the stain shape and size. The black trajectories are visibly curved, and 

correspond to the lowest impact energy compatible with the stain shape and size. The volume of 

the region of origin can be calculated according to equation (14). For a probability of 10-5, the 

region of origin has a volume of 0.23 L, which is about a quarter of that of a grapefruit, a commonly 

used estimate of the volume of the region of origin. Note that some stains pointing downwards, 

typically excluded from state of the art reconstructions, are also considered in the reconstruction. 

Reconstruction results for an impact slower with an origin far away from the wall, are in Figure 5. 

The volume of the region of origin increases drastically. Here the region of origin has a volume of 

102 L, which correspond to about 100 grapefruits or 14 basketballs –another proposed estimate 

of the volume of the region of origin [14]. Interestingly, the major uncertainty is along the vertical 

axis. Similarly to the previous result, some stains pointing downwards are also considered in the 

reconstruction. 

 

ACCEPTED M
ANUSCRIP

T



14 
 

Similar reconstruction efforts have been undertaken with the six other spatter patterns referenced 

in Table 1. The volume of the region of origin, which corresponds to the uncertainty in the 

determination of the origin, is plotted in Figure 6 using equation (14), with the values of the PDF 

that correspond to blue, green or red region of origin in Figure 5. Figure 6 reveals that the 

uncertainty VRO is proportional to the distance x0 between source and wall at power close to 5,  

n

RO OV x , with 4.7 4.9n .  (15) 

The above estimate confirms that the volume of the region of origin has a strong dependence on 

the distance from the wall. This value can be explained because the uncertainty in either 

horizontal direction grows linearly with the distance xO as 
Ox x  , and

Oy x , while  the 

uncertainty in the vertical direction grows as 
21

2
z gt . Assuming a steady horizontal velocity u 

of the drop, the travel time Ox
t

u
. Combining the two latter assumptions results in 

2

02

1

2
z gx

u
. 

Thus a rough estimate of the uncertainty 
4

0ROV x y z x . Numerically, the exponent of the 

power law (Eq. (14), 4.7 4.9n ) is slightly larger than four. Also, the assumption of z is 

inversely proportional to the square of the velocity, which indicates that selecting stains generated 

from faster drops might decrease reconstruction uncertainty. Note that in both spatter patterns 

reconstructed in the above figures, some stains pointing downwards are considered, while these 

are typically excluded in traditional reconstruction methods. 

  

 

Besides the uncertainty on the determination of the region of origin, we can also determine its 

error. The error in the determination of the region of origin is defined in the classical manner [37] 

as the difference between the estimated and the known region of origin of a spatter pattern. Here, 

it is calculated as the smallest vector between the determined region of origin and the known 

region of origin.  Figure 7 plots the absolute values of the horizontal (dx) and vertical (dz) 

components of this error, assuming a parameter P=10-3, as a function of the horizontal distance 

between blood source and wall. Typically, dx is negative (the source is found closer to the wall), 

and dz is positive (the source is found higher than it actual location). The error of the present 

method, at least with the 8 spatter patterns studied, is always smaller than 10cm, and does not 

grow with the distance from the wall. Although typically negligible in a crime scene, and 

independent of the distance from the wall, the error is not always zero. This means that with the 

present method, the known region of origin is not always within the determined region of origin. 

Possible reasons for this are: the assumption that ellipticity exactly determines the impact angle 

(Eq. (3)), no matter the stain size or impact energy; the equations of motion (Eq.  (1)) that neglect 

interactions between drops; the drag coefficient that neglects oscillations of drops, while 

considering their steady deformation; and the fact that atomization occurs over a volume rather 

than a specific point. From the eight spatter patterns examined, it appears that the present method 

does not exhibit a systematic bias or error. A comparison is made with a systematic study [38] on 

the sources of error in reconstruction using straight trajectories. Since no peer-reviewed results 

could be found for spatter patterns more than one meter away from the wall, additional 

reconstruction results assuming straight trajectories obtained by participants to a workshop given 

by the first author are also plotted in green. The data points obtained while assuming straight 
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trajectories (in yellow and green) are averaged from several trials. In comparison, the method of 

strings shows a systematic error in the determination of the height: the determined height is higher 

than the known height. This bias is well known from BPA researchers and practitioners [6, 39]. 

Another important difference between the present method and the method of strings is that there 

is currently no universally accepted [10], rational determination of the uncertainty associated with 

the method of strings for a specific spatter pattern.  

Should the above method be used on a crime scene, two recommendations for crime scene 

documentation should be stated. Since the method relies on inspection of the stain boundaries, it 

is important to photograph stains with the highest possible resolution. In this study, a resolution 

of 600 dots per inch was used since the patterns were scanned at high resolution. Using a macro-

lens and a state of the art digital camera, resolutions of the same order can been reached by 

stitching [40] multiple images of small areas (O(10cmx10cm)). Protocols for reliable stitching and 

for quality illumination in the macro-photography process –where the camera objective is close to 

the object- would have to be designed.   Also, the transitions between stain shapes depend on 

the blood and target material on which stains are found, which has implications in documentation 

and preservation of evidence. Until reliable calibration data is provided, we recommend that 

investigators collect samples of the target surface of interest and hematocrit measurements. Note 

also that in a real crime scene, it is not uncommon that the blood source moves during the 

generation of the blood spatter. That fact will add additional uncertainty in the determination of 

the region of origin. 

   

 

 
 

 

Conclusion 
In this study, we propose a novel method based on sound fluid dynamics and a probabilistic 

approach to determine the region of origin of the impact blood spatter patterns associated with 

beatings. The method is based on the inspection of high-resolution images of the spatter patterns, 

where the presence or absence of splashing traces at the periphery of drops is used to narrow 

down the possible range of impact conditions. A range of spatter patterns with various impact 

energies and distances between the source and spatter pattern is reconstructed with the 

proposed method. The region of origin of a blood spatter pattern is quantified in the form of a 

volume surrounding the most likely point of origin, determined by propagating the uncertainties 

due to stain measurements. The method presented here allows a rational and case-related 

estimate of the uncertainty associated with trajectory reconstruction. The statistical framework is 

flexible and general enough to accommodate current and future advances in the fluid dynamics 

of blood spatter patterns. Our results suggest that uncertainty grows with a power five for the 

distance between the spatter pattern and the target, and can reach more than the traditional 

estimate of the volume of a grapefruit or a basketball. The proposed method allows the 

consideration of stains pointing downwards, which are typically excluded from trajectory 

reconstruction. It is the belief of the authors that the proposed reconstruction method can be used 
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to prescribe recommendation on crime scene documentation. Future work will focus on providing 

calibration data for other target surfaces relevant to crime scenes, and on transitioning this 

reconstruction method from an academic exercise to a tool useful for crime scene reconstructions.  
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Figure 1: The problem at hand is the determination of the region of origin of a blood spatter pattern 
on a vertical wall. The coordinate system used in this manuscript is mentioned, with subscript “o” 
indicating the origin of the blood, and “0” being the origin of the coordinate trihedron. Indicated 
are the region of origin –the location where the blood was atomized- and its projection on a 
horizontal plane, the region of convergence.  
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Figure 2: Phase diagram linking three different morphologies of stain boundaries (smooth, 

wavy, and splashed) to the impact conditions in terms of dimensionless numbers. Each 

symbol on the plot corresponds to a measurement of at least 10 drops. The color of the 

symbol identifies the shape corresponding to the majority of the stains of a given 

calibration measurement (splashed, wavy or smooth).  
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Figure 3: A probabilistic method to evaluate the region of origin of a blood spatter pattern. Here, 

two stains i=1,2 are illustrated in blue and orange, respectively, but the method is compatible with 

large numbers of stains. From each stain, a range of trial trajectories are reconstructed. Fluid 

dynamic principles guide the reconstruction and the range of trial trajectories (the faster trajectory 

in red, and the slower, in black). The directional angle is measured by stain inspection, and i

is the direction of the drop trajectories projected on a horizontal plane. On the horizontal plane, 

the likelihood  determines the location of the region of convergence, and is obtained as a 

product of the PDF of each stain i . On the vertical axis, the likelihood k determines the height 

of the origin above point k of the region of convergence, and is obtained as a product of the 

probability density function (PDF) of each stain ik . The region of origin is then constructed as a 

product of and . 
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Figure 4: Reconstruction of trajectories for spatter pattern HP31, corresponding to a fast impact, 

close from the wall (xo=30cm). 3D view (a), top view (b), side view (c), and view from the stained 

wall (d) of the trajectories and the region of origin. The region of origin is represented as concentric 

volumes, where red, green and blue colors corresponding to probability values of 0.1, 10-3 and 

10-5, respectively. Trajectories with the highest energy are in red, and trajectories with the lowest 

energy are in black. The known origin is shown by a white disk with a red cross.  
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Figure 5: Results for spatter pattern C9, corresponding to a slow impact, far from the wall 

(xo=120cm). Axes and colors are the same as in Figure 4. 
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Figure 6: Volume of the region of origin as a function of the horizontal distance between blood 

source and wall, as determined by the reconstruction method presented in this manuscript. 

Parameter P is the value of the probability used to define the region of origin, equation (14). 
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Figure 7: Error in the determination of the region of origin as a function of the horizontal distance 

between blood source and wall, as determined by the reconstruction method presented in this 

manuscript. For comparison are plotted results using reconstruction methods assuming straight 

trajectories. 
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Table 1: Description of the spatter patterns used in this study, representing a range of beating 

conditions. Names refers to [5], which provides high-resolution picture and experimental details 

of each spatter pattern. 

Name Distance blood source to 
target wall, x0, cm 

Velocity of 
impactor, m/s 

Type of impact 

C9 (slow impact, blood 
source far from the wall) 

120 2.4 Two flat surfaces 
colliding 

HP 31 (fast impact, blood 
source close to wall) 

30 7.8 Rod hitting flat surface 

HP 7 60 5.2 

HP 53 60 7.8 

HP 30 60 7.8 

HP 11 120 5.2 

HP 24 120 7.8 

HP 21  190 7.8 
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